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The sine-Gordon model in 1 + 1 dimensions is studied within the Schr6dinger 
framework for field theory. In particular we evaluate the effective potential and 
examine the finiteness of re(t), the soliton mass, for all t. 

1. I N T R O D U C T I O N  

In  dealing with time-dependent field-theoretic problems, the Schr6- 
dinger picture is particularly suitable (Jackiw and Kerman, 1979; Cooper 
and Mottola,  1987; Pi and Samiullah, 1987) as it gives a clear picture of  the 
system's time evolution. The method is even better than the loop expansion, 
as it is nonperturbative in ~. The method has been applied to various quan- 
tum mechanical problems and the approximate results have been found to 
be in good agreement with the exact ones obtained numerically (Cooper et  
al., 1986). Also, this method has been successfully applied in curved space 
Kim et  al., 1988; Roy, 1991). 

In the present paper we study the sine-Gordon model in (1 + 1)-dimen- 
sional flat space-time and derive an expression for the soliton mass re(t),  
where the time dependence is explicitly shown. 

The organization of  the paper is as follows. In Section 2, we give an 
outline of  the method of  calculating the effective potential in the Schr6dinger 
picture. In Section 3, renormalization in the static case is discussed; the time 
dependence of  G is evaluated in Section 4 for the free theory solution. In 
Section 5, the time dependence ofm2(t) is explicitly calculated, keeping only 
next to leading order terms. Finally, Section 6 gives a summary and remarks. 
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2. FIELD THEORY IN THE SCHRODINGER PICTURE 

In the functional Schr6dinger picture (Pi and Samiullah, 1987; Cooper 
et al., 1986; Kim et aL, 1988) an abstract quantum mechanical state [~,(t)) 
is replaced by a wave functional W(tp, t), which is a functional of a c-number 
field tp(x) at a fixed time t. We shall take our trial wave functional to be 
Gaussian, centered at tp, with width given by G. 

To be precise, we take 

W(q~, t)=Nexp[-fx,y (p(x)B(x, y)(o(y) 

(1) 

where N is the normalization factor and 

~(x) ~ ~p(x) -- ~(X, t) 

i B(x, y) ==-~h G-l(x' y' t) -~  E(x, y, t) 

(2) 

(3) 

The following expectation values are obtained easily by functional 
integration: 

(~0(x)) = (b(x, t) (4) 

(-ili ~ l=  ~(x, t) (5) 

(q~(x)~o(y) ) = ~(x, t)~(y, t) + tiG(x, y, t) (6) 

( i l i ~ ) = ;  ~(x,t)(o(x,t)+ti!~ E(x,y,t)G(y,x,t) (7) 
,Y 

t~, ~, G, and E are the variational parameters. ~ and E play the role of 
conjugate momenta of tp and G, respectively. 

The effective action in this picture is given by 

F = f dt ( ~,(t)liliOt- HI q/(t)) (8) 
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where the Hamiltonian is given by 

H =  t-2 (V~p)2 + V(q 0 (9) 

The sine-Gordon model in (1 + 1) dimensions is governed by the potential 
(Rajaraman, 1982) 

P4 (1 -cos ~ ~o) ( v( o) = 7  10) 

The Euler-Lagrange equation for q~ for the potential given in (10) has the 
static localized solution 

~(x) = 4 tan -j [exp(px- pXo)] (11) 

where 

~(x) = "f~ ~p(x) (12) 
/1 

An outline of the solution (11) is sketched in Figure I. 
Now taking the expectation value with respect to the trial wave function 

(1), we get 

(V((o))=P-~--~[1-cos(~--~qO f 'q'IiG'~] expt- 2-~)  J (13) 

~ ( x )  J 

27~ 

37~ 
2 

Fig. 1 

7~ 
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In deriving (13), we have used 

v(~o) = v(~) + ~ v m ( ~ )  + v(=)(~) + . . -  

and 
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(14) 

(r = (2n)__J (92) ,  (15) 
2"n! 

The expectation value of cos[(,f~//J)~p] can be directly obtained by writing 

,/x 

and then performing a functional integration. 
The effective potential now reduces to 

[~e- ~ ~r - ~ (vr - < v(e)) ] 

+nIf~, zd-2 f~,y, zo~-fx(~-'-~v:G)]} (16) 
The variational equations are 

6F O~ ~(x, t)=V2~o(x, t)-~-~ (V)  (17) (i) a--~ = 

(ii) ~--F-F=0--,~(x, t)=~(x, t) (18) 

(iii) ~F = 0 --+ G(x, y, t) 
8Z 

=2{f. rE(x, y, t)G(z,y, t)+G(x,z, t)Z(x,y, t)]} (19) 
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(iv) 6 r  = 0 ~ E(x, y, t) + 2 f E(x, z, t)E(z, y, t) 
SG L 

=!~-~(x,y,t)+~8 -~g je (x-y)  

Henceforth we shall put $ = 1. 

1965 

(20) 

3. RENORMALIZATION OF THE EFFECTIVE POTENTIAL 

We first consider the static case. Here the effective action F reduces to 
an effective potential V, ff and is given by 

F = -fdt dx Veff (21) 

We further take ~b(x, t )= const (i.e., stationary static case). 
Then Verr takes the form 

V e f f = ~ [ 1 - c o s ( - ~  ' [ 3.G'] 1 , 1 

or  

4 ~ 2 \ p  

In deriving (23) we have used equation (20) and the result 

t~(V) =//2 cos (--~-~ exp - (24) 
8G 2 \ It 

G satisfies the following gap equation: 

x') = -V~+# 2 (25) G-2(x' I c~ r ~'G(2--~xp2x) )] 6(x- x') 

Next we introduce a mass m defined by 

m 2 = / t 2 c o s ( ~ t p ) e x p [  . ;~G(x'x)12/l z j (26, 
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Using (26), we get from (25) 

G(x, x) = f 1 
Jk 2(k 2 + rn z) 1/2 

where 

(27) 

where 

and 

2 gZV~rf[ [ ,~lG(mn)] m n = ~  I =/~2 exp (29) 
6~o I~=o 2 

64Veff =X,m 2 (1 +,~1/4rc) (30) 
' t R = -  584 o=o ( 1 - , t d 8 ~ )  

Z, =~-~ (31) 

Equation (30) shows that ,~1 is finite, implying only mass renormalization is 
sufficient in (I + 1) dimensions. 

To express Vorr in terms of the renormalized parameters, we use the 
following results, which can be obtained by explicit integration: 

m 2 
- l l n  - -  (32) G(m)- G(mn) = 4to rn2n 

and 

�88 [G-' (rn) - G-l (mR)] = �89 (m 2 - m 2) G(mn) 

m~(m21nm2 m 2 ) 
8~ \m-~n mZR rn~ 4-1 (33) 

These results are similar to those obtained for Io and I1 by Stevenson (1985). 
After subtracting the zero-point energy, the resulting renormalized 

effective potential is found to be 

Veff= (m2 -- m 2R) ( l - - ~ l  ) (34) 

- ( 2 8 )  

/12 and ~ are bare quantities which require renormalization. The renormal- 
ized parameters are defined by 
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where 

( tV/2 / 1 - )l'l/8~r 

n~R/t =m~ cos(,f~'j ~b) (35) 

These results agree with those obtained by Roy et al. (1989) using the GEP 
approach. However, the GEP method, as it stands, does not give any insight 
into the time evolution of the system. In the following we proceed to investi- 
gate the time evolution of the system, starting with the free theory solution. 

4. FREE T H E O R Y  S O L U T I O N  

The variation equations (with (b= 0) are 

(~(k, t )= 4E(k, t)G(k, t) (36) 

: 
s t)=~G-2(k, t)-2~2(k, t) k2+p 2 - exp ~-  ~--/] j  (37) 

In the limit/~ --+ O, the above two equations reduce to a single equation, 

1 2 Q = - - ~ -  wkQ (38) 

where 

QZ=-Go and wk==-(k2 + p2) 1/2 (39) 

After some straightforward mathematics, we derive the following expression 
for Go(k, t): 

1 {l+2n~_[(l+2n~)2_l]l/2cos2[wkt_fio(k)]} (40) Go(k, t) = 2w--~ 

with the phase given by 

_ Wk IG2(k,O) G2(k,O)+l] 
cot 260(k) G(k, 0)(~(k, 0) 4w~ (41) 

and the average energy of the kth mode being 

Ek = nk+ Wk-sG(k,O~ ) J--G-'(k,O)+8 w~G(k,O) (42) 
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nk is the average particle number of the kth mode. From (42) 

_I_L_ 
nk-- 8w~G [(1 - 2WkG) 2 + t~ 2] (43) 

The initial states should be so chosen that the average particle number 
density remains finite. In other words, nk must satisfy 

fk nk < O0 (44)  

implying 

1 
nk k ~  ;-~ (45) k ' -  

From equation (43), the initial states then have G(k, 0) and (~(k, 0) of the 
form 

with 

and 

1 
G(k, 0) = --2-,/2 [ 1 +f(k)] (46) 

2(k 2 + m )  

1 
Lim f(k)=-- [a+ b cos a(k)] 
k-.oo k 

(47) 

1 
Lim 4(k, 0) = -  [A + B cos fl (k)] (48) 
k--* oo k 

Here a, b, A, and B are k-independent constants and rh is a mass parameter 
(in fact th denotes the initial mass), a and fl are nonoscillatory. 

5. TIME EVOLUTION OF THE SOLITON MASS 

We define a time-dependent mass term 

m2(t)=/t2COS(x/~l t~)exp[ - ~  f G(k,t)] (49) 
L 2Jk 

We consider the simple case t~= 0. However, renormalizability is unaffected 
by the value of ~. Thus, 

m2( t) = m~ exp[-r~2(t)] (50) 
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where 

r~2(t)=~fk[G(k,t)-Gv(k)] (5l) 

and 

1 
Go(k) - 2(k2 + m2) 1/2 (52) 

The time-dependent equation for G is therefore 

G(k, t) J -1 =~G (k, t)+�89 t)(~2(k, t) 

- 2 { ~  + m~ exp[-fft2(t)] } G(k, t) (53) 

The k ~ oo limit of  this equation is identical to the asymptotic limit of the 
free equation without the mass terms. 

Our next objective is to find the next to leading order terms which 
depend on the time-dependent mass. For this, we can apply the perturbation 
method described in detail by Pi and Samiullah (1987). However, note that 
to show the finiteness of  m2(t), we keep terms up to O(,~1) only, as the terms 
containing higher order in ~ will converge for large k if the terms of  the 
first order do so. For the sake of  brevity we give only the outline of  the 
calculation, as the entire calculation is rather lengthy and tedious. 

For our perturbation calculations, we define a quantity 

f~(k, t)=�89 t)-2iZ(k, t) (54) 

in terms of  which the variational equations (36) and (37) reduce to a single 
equation 

i af~ _ f~2_ [k 2 + m2(t)] (55) 
Ot 

Next we expand r~2(t) and f~(k, t) as 

r~2(t) = ~ ZT~2(t) (56) 
n = l  

r~(k, t)= Z ZTf~.(k, t) (57) 
n ~ 0  

and retain terms only up to order s in (50). 
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We skip the details for reasons mentioned earlier and quote the final 
results only: 

G(k,t) ... I m2(t) 4- 1 [a+bcosa(k)]cos2kt 
k~ ~o 2k 4k 3 2k 2 

+2-~ [A + B cos fl(k)] sin 2kt + 0 (58) 

From (51) and (58), we get 

th2(t) 21 t [a+bc~  cos2kt 
= 7 Jk L 2 

+_A+BcOS2k 2 f l ( k ) s i n2k t ]+O( ;  ) (59) 

In deriving (58) and (59) we have chosen the initial mass rh=rh(0) so that 
f (k)  determines the excitation of G(k, 0) relative to Go(k). 

It is clear from (59) that r~2(t) is finite for all t. Hence, from (50) and 
(51) it is clear that the soliton mass m2(t) remains finite for all t. 

6. S U M M A R Y  A N D  REMARKS 

We have applied a time-dependent variational method to sine-Gordon 
theory in 1 + 1 dimensions. As mentioned earlier, sine-Gordon theory has 
a static localized soliton solution. The time-dependent variational method 
enables us to find the time evolution of the system, particularly the time 
dependence of the mass. Our static solution reproduces the GEP result 
obtained in Roy et al. (1989). This is not surprising, as the GEP is also 
essentially a scaling variational method, but unfortunately there is no proce- 
dure for investigating the time evolution in the GEP method. In this respect 
the time-dependent scaling variational method is quite useful. We have 
shown that mZ(t) of the sine-Gordon theory is finite for all t. 

REFERENCES 

Cooper, F., and Mottola, E. (1987). Physical Review D, 36, 3114. 
Cooper, F., Pi, S.-Y., and Stancioff, P. N. 0986). Physical Review D, 34, 3831. 
Jackiw, R., and Kerman, A. (1979). Physical Letters, 71A, 158. 
Kim, S. K., Namgung, W., Sob, K. S., and Lee, J. H. 0988). Physical Review D, 38, 1853. 
Pi, S.-Y., and Samiullah, M. (1987). Physical Review D, 36, 3128. 
Rajaraman, R. (1982). Solitons and lnstantons in Quantum Field Theory, North-Holland, 

Amsterdam. 



Sine-Gordon Quantum Field Theory 1971 

Roy, B. (1991). International Journal of Modern Physics .4, 6, 1525. 
Roy, P., Royehoudhury, R., and Varshni, Y. P. (1989). Modern Physics Letters A, 4, 2031. 
Stevenson, P. M. (1985). Physical Review D, 32, 1389. 


